Diffuse Pattern Learning with Fuzzy ARTMAP and PASS
نویسندگان
چکیده
Fuzzy ARTMAP is compared to a classifier system (CS) called PASS (predictive adaptive sequential system). Previously reported results in a benchmark classification task suggest that Fuzzy ARTMAP systems perform better and are more parsimonious than systems based on the CS architecture. The tasks considered here differ from ordinary classificatory tasks in the amount of output uncertainty associated with input categories. To be successful, learning systems must identify not only correct input categories, but also the most likely outputs for those categories. Performance under various types of diffuse patterns is investigated using a simulated scenario.
منابع مشابه
Fuzzy ARTMAP based electronic nose data analysis
Ž . The Fuzzy ARTMAP neural network is a supervised pattern recognition method based on fuzzy adaptive resonance theory ART . It is Ž a promising method since Fuzzy ARTMAP is able to carry out on-line learning without forgetting previously learnt patterns stable . Ž . learning , it can recode previously learnt categories adaptive to changes in the environment and is self-organising. This paper ...
متن کاملSupervised Incremental Learning with the Fuzzy ARTMAP Neural Network
Automatic pattern classifiers that allow for on-line incremental learning can adapt internal class models efficiently in response to new information without retraining from the start using all training data and without being subject to catastrophic forgeting. In this paper, the performance of the fuzzy ARTMAP neural network for supervised incremental learning is compared to that of supervised b...
متن کاملA fuzzy ARTMAP nonparametric probability estimator for nonstationary pattern recognition problems
An incremental, nonparametric probability estimation procedure using the fuzzy ARTMAP (adaptive resonance theory-supervised predictive mapping) neural network is introduced. In the slow-learning mode, fuzzy ARTMAP searches for patterns of data on which to build ever more accurate estimates. In max-nodes mode, the network initially learns a fixed number of categories, and weights are then adjust...
متن کاملA Neuro-Fuzzy System that Uses Distributed Learning for Compact Rule Set Generation
ARTMAP based architectures have several desirable properties that make them very suitable for pattern classification problems. However, they suffer from category proliferation. Distributed coding has been proposed as a solution for memory compression. dARTMAP neural network has been introduced as a modification of Fuzzy ARTMAP that, due to distributed learning, achieves code compression while f...
متن کاملSupervised Learning of Fuzzy ARTMAP Neural Networks Through Particle Swarm Optimization
In this paper, the impact on fuzzy ARTMAP performance of decisions taken for batch supervised learning is assessed through computer simulation. By learning different realworld and synthetic data, using different learning strategies, training set sizes, and hyperparameter values, the generalization error and resources requirements of this neural network are compared. In particular, the degradati...
متن کامل